| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latcl2.b |
|- B = ( Base ` K ) |
| 2 |
|
latcl2.j |
|- .\/ = ( join ` K ) |
| 3 |
|
latcl2.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
latcl2.k |
|- ( ph -> K e. Lat ) |
| 5 |
|
latcl2.x |
|- ( ph -> X e. B ) |
| 6 |
|
latcl2.y |
|- ( ph -> Y e. B ) |
| 7 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 8 |
1 2 3
|
islat |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 9 |
4 8
|
sylib |
|- ( ph -> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 10 |
9
|
simprld |
|- ( ph -> dom .\/ = ( B X. B ) ) |
| 11 |
7 10
|
eleqtrrd |
|- ( ph -> <. X , Y >. e. dom .\/ ) |
| 12 |
9
|
simprrd |
|- ( ph -> dom ./\ = ( B X. B ) ) |
| 13 |
7 12
|
eleqtrrd |
|- ( ph -> <. X , Y >. e. dom ./\ ) |
| 14 |
11 13
|
jca |
|- ( ph -> ( <. X , Y >. e. dom .\/ /\ <. X , Y >. e. dom ./\ ) ) |