Step |
Hyp |
Ref |
Expression |
1 |
|
latjass.b |
|- B = ( Base ` K ) |
2 |
|
latjass.j |
|- .\/ = ( join ` K ) |
3 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
4 |
3
|
3adant3r1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
5 |
4
|
oveq2d |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( X .\/ ( Z .\/ Y ) ) ) |
6 |
1 2
|
latjass |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( X .\/ ( Y .\/ Z ) ) ) |
7 |
|
simpr1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
8 |
|
simpr3 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
9 |
|
simpr2 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
10 |
7 8 9
|
3jca |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X e. B /\ Z e. B /\ Y e. B ) ) |
11 |
1 2
|
latjass |
|- ( ( K e. Lat /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .\/ Z ) .\/ Y ) = ( X .\/ ( Z .\/ Y ) ) ) |
12 |
10 11
|
syldan |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Z ) .\/ Y ) = ( X .\/ ( Z .\/ Y ) ) ) |
13 |
5 6 12
|
3eqtr4d |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( X .\/ Z ) .\/ Y ) ) |