| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latjcom.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | latjcom.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | opelxpi |  |-  ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) | 
						
							| 5 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 6 | 1 2 5 | islat |  |-  ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) ) | 
						
							| 7 |  | simprl |  |-  ( ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) -> dom .\/ = ( B X. B ) ) | 
						
							| 8 | 6 7 | sylbi |  |-  ( K e. Lat -> dom .\/ = ( B X. B ) ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom .\/ = ( B X. B ) ) | 
						
							| 10 | 4 9 | eleqtrrd |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) | 
						
							| 11 |  | opelxpi |  |-  ( ( Y e. B /\ X e. B ) -> <. Y , X >. e. ( B X. B ) ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) | 
						
							| 14 | 13 9 | eleqtrrd |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. dom .\/ ) | 
						
							| 15 | 10 14 | jca |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) | 
						
							| 16 |  | latpos |  |-  ( K e. Lat -> K e. Poset ) | 
						
							| 17 | 1 2 | joincom |  |-  ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) | 
						
							| 18 | 16 17 | syl3anl1 |  |-  ( ( ( K e. Lat /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) | 
						
							| 19 | 15 18 | mpdan |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |