Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
|- B = ( Base ` K ) |
2 |
|
latlej.l |
|- .<_ = ( le ` K ) |
3 |
|
latlej.j |
|- .\/ = ( join ` K ) |
4 |
1 2 3
|
latjlej1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X .\/ Z ) .<_ ( Y .\/ Z ) ) ) |
5 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
6 |
5
|
3adant3r2 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
7 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
8 |
7
|
3adant3r1 |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
9 |
6 8
|
breq12d |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Z ) .<_ ( Y .\/ Z ) <-> ( Z .\/ X ) .<_ ( Z .\/ Y ) ) ) |
10 |
4 9
|
sylibd |
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z .\/ X ) .<_ ( Z .\/ Y ) ) ) |