Metamath Proof Explorer


Theorem latleeqj2

Description: "Less than or equal to" in terms of join. ( chlejb2 analog.) (Contributed by NM, 14-Nov-2011)

Ref Expression
Hypotheses latlej.b
|- B = ( Base ` K )
latlej.l
|- .<_ = ( le ` K )
latlej.j
|- .\/ = ( join ` K )
Assertion latleeqj2
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y .\/ X ) = Y ) )

Proof

Step Hyp Ref Expression
1 latlej.b
 |-  B = ( Base ` K )
2 latlej.l
 |-  .<_ = ( le ` K )
3 latlej.j
 |-  .\/ = ( join ` K )
4 1 2 3 latleeqj1
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .\/ Y ) = Y ) )
5 1 3 latjcom
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) )
6 5 eqeq1d
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) = Y <-> ( Y .\/ X ) = Y ) )
7 4 6 bitrd
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y .\/ X ) = Y ) )