Description: "Less than or equal to" in terms of join. ( chlejb2 analog.) (Contributed by NM, 14-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
latlej.l | |- .<_ = ( le ` K ) |
||
latlej.j | |- .\/ = ( join ` K ) |
||
Assertion | latleeqj2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y .\/ X ) = Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | |- B = ( Base ` K ) |
|
2 | latlej.l | |- .<_ = ( le ` K ) |
|
3 | latlej.j | |- .\/ = ( join ` K ) |
|
4 | 1 2 3 | latleeqj1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .\/ Y ) = Y ) ) |
5 | 1 3 | latjcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
6 | 5 | eqeq1d | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) = Y <-> ( Y .\/ X ) = Y ) ) |
7 | 4 6 | bitrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y .\/ X ) = Y ) ) |