Metamath Proof Explorer


Theorem latleeqm2

Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses latmle.b
|- B = ( Base ` K )
latmle.l
|- .<_ = ( le ` K )
latmle.m
|- ./\ = ( meet ` K )
Assertion latleeqm2
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y ./\ X ) = X ) )

Proof

Step Hyp Ref Expression
1 latmle.b
 |-  B = ( Base ` K )
2 latmle.l
 |-  .<_ = ( le ` K )
3 latmle.m
 |-  ./\ = ( meet ` K )
4 1 2 3 latleeqm1
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X ./\ Y ) = X ) )
5 1 3 latmcom
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) )
6 5 eqeq1d
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) = X <-> ( Y ./\ X ) = X ) )
7 4 6 bitrd
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y ./\ X ) = X ) )