Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | |- B = ( Base ` K ) |
|
| latmle.l | |- .<_ = ( le ` K ) |
||
| latmle.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latleeqm2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y ./\ X ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | |- B = ( Base ` K ) |
|
| 2 | latmle.l | |- .<_ = ( le ` K ) |
|
| 3 | latmle.m | |- ./\ = ( meet ` K ) |
|
| 4 | 1 2 3 | latleeqm1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X ./\ Y ) = X ) ) |
| 5 | 1 3 | latmcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 6 | 5 | eqeq1d | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) = X <-> ( Y ./\ X ) = X ) ) |
| 7 | 4 6 | bitrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( Y ./\ X ) = X ) ) |