| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latlej.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | latlej.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | latlej.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | simp1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat ) | 
						
							| 5 |  | simp2 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B ) | 
						
							| 6 |  | simp3 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y e. B ) | 
						
							| 7 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 8 | 1 3 7 4 5 6 | latcl2 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom .\/ /\ <. X , Y >. e. dom ( meet ` K ) ) ) | 
						
							| 9 | 8 | simpld |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) | 
						
							| 10 | 1 2 3 4 5 6 9 | lejoin1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X .<_ ( X .\/ Y ) ) |