| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latmass.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | latmass.m |  |-  ./\ = ( meet ` K ) | 
						
							| 3 |  | eqid |  |-  ( ODual ` K ) = ( ODual ` K ) | 
						
							| 4 | 3 | odulat |  |-  ( K e. Lat -> ( ODual ` K ) e. Lat ) | 
						
							| 5 | 3 1 | odubas |  |-  B = ( Base ` ( ODual ` K ) ) | 
						
							| 6 | 3 2 | odujoin |  |-  ./\ = ( join ` ( ODual ` K ) ) | 
						
							| 7 | 5 6 | latjass |  |-  ( ( ( ODual ` K ) e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) | 
						
							| 8 | 4 7 | sylan |  |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) ./\ Z ) = ( X ./\ ( Y ./\ Z ) ) ) |