Metamath Proof Explorer


Theorem latmcl

Description: Closure of meet operation in a lattice. ( incom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latmcl.b
|- B = ( Base ` K )
latmcl.m
|- ./\ = ( meet ` K )
Assertion latmcl
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B )

Proof

Step Hyp Ref Expression
1 latmcl.b
 |-  B = ( Base ` K )
2 latmcl.m
 |-  ./\ = ( meet ` K )
3 eqid
 |-  ( join ` K ) = ( join ` K )
4 1 3 2 latlem
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ( join ` K ) Y ) e. B /\ ( X ./\ Y ) e. B ) )
5 4 simprd
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B )