Description: Closure of meet operation in a lattice. ( incom analog.) (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmcl.b | |- B = ( Base ` K ) |
|
| latmcl.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmcl.b | |- B = ( Base ` K ) |
|
| 2 | latmcl.m | |- ./\ = ( meet ` K ) |
|
| 3 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 4 | 1 3 2 | latlem | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ( join ` K ) Y ) e. B /\ ( X ./\ Y ) e. B ) ) |
| 5 | 4 | simprd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |