Step |
Hyp |
Ref |
Expression |
1 |
|
latmidm.b |
|- B = ( Base ` K ) |
2 |
|
latmidm.m |
|- ./\ = ( meet ` K ) |
3 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
4 |
|
simpl |
|- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
5 |
1 2
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X ./\ X ) e. B ) |
6 |
5
|
3anidm23 |
|- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) e. B ) |
7 |
|
simpr |
|- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
8 |
1 3 2
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X ./\ X ) ( le ` K ) X ) |
9 |
8
|
3anidm23 |
|- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) ( le ` K ) X ) |
10 |
1 3
|
latref |
|- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
11 |
1 3 2
|
latlem12 |
|- ( ( K e. Lat /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> X ( le ` K ) ( X ./\ X ) ) ) |
12 |
4 7 7 7 11
|
syl13anc |
|- ( ( K e. Lat /\ X e. B ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> X ( le ` K ) ( X ./\ X ) ) ) |
13 |
10 10 12
|
mpbi2and |
|- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) ( X ./\ X ) ) |
14 |
1 3 4 6 7 9 13
|
latasymd |
|- ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) = X ) |