Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latledi.b | |- B = ( Base ` K ) |
|
latledi.l | |- .<_ = ( le ` K ) |
||
latledi.j | |- .\/ = ( join ` K ) |
||
latledi.m | |- ./\ = ( meet ` K ) |
||
Assertion | latmlej12 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( Z .\/ X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latledi.b | |- B = ( Base ` K ) |
|
2 | latledi.l | |- .<_ = ( le ` K ) |
|
3 | latledi.j | |- .\/ = ( join ` K ) |
|
4 | latledi.m | |- ./\ = ( meet ` K ) |
|
5 | 1 2 3 4 | latmlej11 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( X .\/ Z ) ) |
6 | 1 3 | latjcom | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
7 | 6 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
8 | 5 7 | breqtrd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( Z .\/ X ) ) |