Metamath Proof Explorer


Theorem latmlej22

Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses latledi.b
|- B = ( Base ` K )
latledi.l
|- .<_ = ( le ` K )
latledi.j
|- .\/ = ( join ` K )
latledi.m
|- ./\ = ( meet ` K )
Assertion latmlej22
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ X ) .<_ ( Z .\/ X ) )

Proof

Step Hyp Ref Expression
1 latledi.b
 |-  B = ( Base ` K )
2 latledi.l
 |-  .<_ = ( le ` K )
3 latledi.j
 |-  .\/ = ( join ` K )
4 latledi.m
 |-  ./\ = ( meet ` K )
5 1 4 latmcom
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) )
6 5 3adant3r3
 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) = ( Y ./\ X ) )
7 1 2 3 4 latmlej12
 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( Z .\/ X ) )
8 6 7 eqbrtrrd
 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ X ) .<_ ( Z .\/ X ) )