| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latmle.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							latmle.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							latmle.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							latmlem1 | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X ./\ Z ) .<_ ( Y ./\ Z ) ) )  | 
						
						
							| 5 | 
							
								1 3
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) = ( Z ./\ X ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3adant3r2 | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) = ( Z ./\ X ) )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) = ( Z ./\ Y ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant3r1 | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ Z ) = ( Z ./\ Y ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							breq12d | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Z ) .<_ ( Y ./\ Z ) <-> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							sylibd | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z ./\ X ) .<_ ( Z ./\ Y ) ) )  |