| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latnle.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							latnle.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							latnle.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							latnle.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X .<_ ( X .\/ Y ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biantrurd | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X =/= ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) )  | 
						
						
							| 7 | 
							
								1 2 4
							 | 
							latleeqj1 | 
							 |-  ( ( K e. Lat /\ Y e. B /\ X e. B ) -> ( Y .<_ X <-> ( Y .\/ X ) = X ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3com23 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> ( Y .\/ X ) = X ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( Y .\/ X ) = X <-> X = ( Y .\/ X ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitrdi | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> X = ( Y .\/ X ) ) )  | 
						
						
							| 11 | 
							
								1 4
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqeq2d | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X = ( X .\/ Y ) <-> X = ( Y .\/ X ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bitr4d | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> X = ( X .\/ Y ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							necon3bbid | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. Y .<_ X <-> X =/= ( X .\/ Y ) ) )  | 
						
						
							| 15 | 
							
								1 4
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B )  | 
						
						
							| 16 | 
							
								2 3
							 | 
							pltval | 
							 |-  ( ( K e. Lat /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X .< ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syld3an3 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .< ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) )  | 
						
						
							| 18 | 
							
								6 14 17
							 | 
							3bitr4d | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. Y .<_ X <-> X .< ( X .\/ Y ) ) )  |