Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K )  | 
					|
| latlej.l | |- .<_ = ( le ` K )  | 
					||
| latlej.j | |- .\/ = ( join ` K )  | 
					||
| Assertion | latnlej2l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> -. X .<_ Y )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K )  | 
						|
| 2 | latlej.l | |- .<_ = ( le ` K )  | 
						|
| 3 | latlej.j | |- .\/ = ( join ` K )  | 
						|
| 4 | 1 2 3 | latnlej2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> ( -. X .<_ Y /\ -. X .<_ Z ) )  | 
						
| 5 | 4 | simpld | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> -. X .<_ Y )  |