| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latnlemlt.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							latnlemlt.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							latnlemlt.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							latnlemlt.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) .<_ X )  | 
						
						
							| 6 | 
							
								5
							 | 
							biantrurd | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) =/= X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) )  | 
						
						
							| 7 | 
							
								1 2 4
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X ./\ Y ) = X ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							necon3bbid | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. X .<_ Y <-> ( X ./\ Y ) =/= X ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat )  | 
						
						
							| 10 | 
							
								1 4
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B )  | 
						
						
							| 11 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B )  | 
						
						
							| 12 | 
							
								2 3
							 | 
							pltval | 
							 |-  ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ X e. B ) -> ( ( X ./\ Y ) .< X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) )  | 
						
						
							| 13 | 
							
								9 10 11 12
							 | 
							syl3anc | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) .< X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) )  | 
						
						
							| 14 | 
							
								6 8 13
							 | 
							3bitr4d | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. X .<_ Y <-> ( X ./\ Y ) .< X ) )  |