Step |
Hyp |
Ref |
Expression |
1 |
|
latnlemlt.b |
|- B = ( Base ` K ) |
2 |
|
latnlemlt.l |
|- .<_ = ( le ` K ) |
3 |
|
latnlemlt.s |
|- .< = ( lt ` K ) |
4 |
|
latnlemlt.m |
|- ./\ = ( meet ` K ) |
5 |
1 2 4
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) .<_ X ) |
6 |
5
|
biantrurd |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) =/= X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) ) |
7 |
1 2 4
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X ./\ Y ) = X ) ) |
8 |
7
|
necon3bbid |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. X .<_ Y <-> ( X ./\ Y ) =/= X ) ) |
9 |
|
simp1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat ) |
10 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
11 |
|
simp2 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B ) |
12 |
2 3
|
pltval |
|- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ X e. B ) -> ( ( X ./\ Y ) .< X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) .< X <-> ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) =/= X ) ) ) |
14 |
6 8 13
|
3bitr4d |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. X .<_ Y <-> ( X ./\ Y ) .< X ) ) |