Metamath Proof Explorer


Theorem latpos

Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011)

Ref Expression
Assertion latpos
|- ( K e. Lat -> K e. Poset )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` K ) = ( Base ` K )
2 eqid
 |-  ( join ` K ) = ( join ` K )
3 eqid
 |-  ( meet ` K ) = ( meet ` K )
4 1 2 3 islat
 |-  ( K e. Lat <-> ( K e. Poset /\ ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) )
5 4 simplbi
 |-  ( K e. Lat -> K e. Poset )