Metamath Proof Explorer


Theorem lattr

Description: A lattice ordering is transitive. ( sstr analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses latref.b
|- B = ( Base ` K )
latref.l
|- .<_ = ( le ` K )
Assertion lattr
|- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )

Proof

Step Hyp Ref Expression
1 latref.b
 |-  B = ( Base ` K )
2 latref.l
 |-  .<_ = ( le ` K )
3 latpos
 |-  ( K e. Lat -> K e. Poset )
4 1 2 postr
 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )
5 3 4 sylan
 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )