Description: A lattice ordering is transitive. ( sstr analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latref.b | |- B = ( Base ` K ) | |
| latref.l | |- .<_ = ( le ` K ) | ||
| Assertion | lattr | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latref.b | |- B = ( Base ` K ) | |
| 2 | latref.l | |- .<_ = ( le ` K ) | |
| 3 | latpos | |- ( K e. Lat -> K e. Poset ) | |
| 4 | 1 2 | postr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) | 
| 5 | 3 4 | sylan | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |