Metamath Proof Explorer


Theorem lattrd

Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)

Ref Expression
Hypotheses lattrd.b
|- B = ( Base ` K )
lattrd.l
|- .<_ = ( le ` K )
lattrd.1
|- ( ph -> K e. Lat )
lattrd.2
|- ( ph -> X e. B )
lattrd.3
|- ( ph -> Y e. B )
lattrd.4
|- ( ph -> Z e. B )
lattrd.5
|- ( ph -> X .<_ Y )
lattrd.6
|- ( ph -> Y .<_ Z )
Assertion lattrd
|- ( ph -> X .<_ Z )

Proof

Step Hyp Ref Expression
1 lattrd.b
 |-  B = ( Base ` K )
2 lattrd.l
 |-  .<_ = ( le ` K )
3 lattrd.1
 |-  ( ph -> K e. Lat )
4 lattrd.2
 |-  ( ph -> X e. B )
5 lattrd.3
 |-  ( ph -> Y e. B )
6 lattrd.4
 |-  ( ph -> Z e. B )
7 lattrd.5
 |-  ( ph -> X .<_ Y )
8 lattrd.6
 |-  ( ph -> Y .<_ Z )
9 1 2 lattr
 |-  ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )
10 3 4 5 6 9 syl13anc
 |-  ( ph -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )
11 7 8 10 mp2and
 |-  ( ph -> X .<_ Z )