Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lattrd.b | |- B = ( Base ` K ) |
|
lattrd.l | |- .<_ = ( le ` K ) |
||
lattrd.1 | |- ( ph -> K e. Lat ) |
||
lattrd.2 | |- ( ph -> X e. B ) |
||
lattrd.3 | |- ( ph -> Y e. B ) |
||
lattrd.4 | |- ( ph -> Z e. B ) |
||
lattrd.5 | |- ( ph -> X .<_ Y ) |
||
lattrd.6 | |- ( ph -> Y .<_ Z ) |
||
Assertion | lattrd | |- ( ph -> X .<_ Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.b | |- B = ( Base ` K ) |
|
2 | lattrd.l | |- .<_ = ( le ` K ) |
|
3 | lattrd.1 | |- ( ph -> K e. Lat ) |
|
4 | lattrd.2 | |- ( ph -> X e. B ) |
|
5 | lattrd.3 | |- ( ph -> Y e. B ) |
|
6 | lattrd.4 | |- ( ph -> Z e. B ) |
|
7 | lattrd.5 | |- ( ph -> X .<_ Y ) |
|
8 | lattrd.6 | |- ( ph -> Y .<_ Z ) |
|
9 | 1 2 | lattr | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
10 | 3 4 5 6 9 | syl13anc | |- ( ph -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
11 | 7 8 10 | mp2and | |- ( ph -> X .<_ Z ) |