Step |
Hyp |
Ref |
Expression |
1 |
|
lawcos.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
lawcos.2 |
|- X = ( abs ` ( B - C ) ) |
3 |
|
lawcos.3 |
|- Y = ( abs ` ( A - C ) ) |
4 |
|
lawcos.4 |
|- Z = ( abs ` ( A - B ) ) |
5 |
|
lawcos.5 |
|- O = ( ( B - C ) F ( A - C ) ) |
6 |
|
subcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
7 |
6
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
8 |
7
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( A - C ) e. CC ) |
9 |
|
subcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
10 |
9
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
11 |
10
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( B - C ) e. CC ) |
12 |
|
subeq0 |
|- ( ( A e. CC /\ C e. CC ) -> ( ( A - C ) = 0 <-> A = C ) ) |
13 |
12
|
necon3bid |
|- ( ( A e. CC /\ C e. CC ) -> ( ( A - C ) =/= 0 <-> A =/= C ) ) |
14 |
13
|
bicomd |
|- ( ( A e. CC /\ C e. CC ) -> ( A =/= C <-> ( A - C ) =/= 0 ) ) |
15 |
14
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A =/= C <-> ( A - C ) =/= 0 ) ) |
16 |
15
|
biimpa |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ A =/= C ) -> ( A - C ) =/= 0 ) |
17 |
16
|
adantrr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( A - C ) =/= 0 ) |
18 |
|
subeq0 |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) |
19 |
18
|
necon3bid |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) =/= 0 <-> B =/= C ) ) |
20 |
19
|
bicomd |
|- ( ( B e. CC /\ C e. CC ) -> ( B =/= C <-> ( B - C ) =/= 0 ) ) |
21 |
20
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B =/= C <-> ( B - C ) =/= 0 ) ) |
22 |
21
|
biimpa |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ B =/= C ) -> ( B - C ) =/= 0 ) |
23 |
22
|
adantrl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( B - C ) =/= 0 ) |
24 |
8 11 17 23
|
lawcoslem1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( abs ` ( ( A - C ) - ( B - C ) ) ) ^ 2 ) = ( ( ( ( abs ` ( A - C ) ) ^ 2 ) + ( ( abs ` ( B - C ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) x. ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) ) |
25 |
|
nnncan2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) - ( B - C ) ) = ( A - B ) ) |
26 |
25
|
fveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( ( A - C ) - ( B - C ) ) ) = ( abs ` ( A - B ) ) ) |
27 |
4 26
|
eqtr4id |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> Z = ( abs ` ( ( A - C ) - ( B - C ) ) ) ) |
28 |
27
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( Z ^ 2 ) = ( ( abs ` ( ( A - C ) - ( B - C ) ) ) ^ 2 ) ) |
29 |
28
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( Z ^ 2 ) = ( ( abs ` ( ( A - C ) - ( B - C ) ) ) ^ 2 ) ) |
30 |
2
|
oveq1i |
|- ( X ^ 2 ) = ( ( abs ` ( B - C ) ) ^ 2 ) |
31 |
3
|
oveq1i |
|- ( Y ^ 2 ) = ( ( abs ` ( A - C ) ) ^ 2 ) |
32 |
30 31
|
oveq12i |
|- ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( abs ` ( B - C ) ) ^ 2 ) + ( ( abs ` ( A - C ) ) ^ 2 ) ) |
33 |
8
|
abscld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( A - C ) ) e. RR ) |
34 |
33
|
recnd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( A - C ) ) e. CC ) |
35 |
34
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( abs ` ( A - C ) ) ^ 2 ) e. CC ) |
36 |
11
|
abscld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( B - C ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( B - C ) ) e. CC ) |
38 |
37
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( abs ` ( B - C ) ) ^ 2 ) e. CC ) |
39 |
35 38
|
addcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( ( abs ` ( A - C ) ) ^ 2 ) + ( ( abs ` ( B - C ) ) ^ 2 ) ) = ( ( ( abs ` ( B - C ) ) ^ 2 ) + ( ( abs ` ( A - C ) ) ^ 2 ) ) ) |
40 |
32 39
|
eqtr4id |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( abs ` ( A - C ) ) ^ 2 ) + ( ( abs ` ( B - C ) ) ^ 2 ) ) ) |
41 |
2 3
|
oveq12i |
|- ( X x. Y ) = ( ( abs ` ( B - C ) ) x. ( abs ` ( A - C ) ) ) |
42 |
34 37
|
mulcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) = ( ( abs ` ( B - C ) ) x. ( abs ` ( A - C ) ) ) ) |
43 |
41 42
|
eqtr4id |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( X x. Y ) = ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) ) |
44 |
5
|
fveq2i |
|- ( cos ` O ) = ( cos ` ( ( B - C ) F ( A - C ) ) ) |
45 |
1 11 23 8 17
|
angvald |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( B - C ) F ( A - C ) ) = ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) |
46 |
45
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( cos ` ( ( B - C ) F ( A - C ) ) ) = ( cos ` ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) |
47 |
44 46
|
syl5eq |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( cos ` O ) = ( cos ` ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) |
48 |
8 11 23
|
divcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( A - C ) / ( B - C ) ) e. CC ) |
49 |
8 11 17 23
|
divne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( A - C ) / ( B - C ) ) =/= 0 ) |
50 |
48 49
|
logcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( log ` ( ( A - C ) / ( B - C ) ) ) e. CC ) |
51 |
50
|
imcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) e. RR ) |
52 |
|
recosval |
|- ( ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) e. RR -> ( cos ` ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) = ( Re ` ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) ) |
53 |
51 52
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( cos ` ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) = ( Re ` ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) ) |
54 |
47 53
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( cos ` O ) = ( Re ` ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) ) |
55 |
|
efiarg |
|- ( ( ( ( A - C ) / ( B - C ) ) e. CC /\ ( ( A - C ) / ( B - C ) ) =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) = ( ( ( A - C ) / ( B - C ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) |
56 |
48 49 55
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) = ( ( ( A - C ) / ( B - C ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) |
57 |
56
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( Re ` ( exp ` ( _i x. ( Im ` ( log ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) = ( Re ` ( ( ( A - C ) / ( B - C ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) ) |
58 |
48
|
abscld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( ( A - C ) / ( B - C ) ) ) e. RR ) |
59 |
48 49
|
absne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( abs ` ( ( A - C ) / ( B - C ) ) ) =/= 0 ) |
60 |
58 48 59
|
redivd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( Re ` ( ( ( A - C ) / ( B - C ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) = ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) |
61 |
54 57 60
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( cos ` O ) = ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) |
62 |
43 61
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( X x. Y ) x. ( cos ` O ) ) = ( ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) x. ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) ) |
63 |
62
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( 2 x. ( ( X x. Y ) x. ( cos ` O ) ) ) = ( 2 x. ( ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) x. ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) |
64 |
40 63
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) - ( 2 x. ( ( X x. Y ) x. ( cos ` O ) ) ) ) = ( ( ( ( abs ` ( A - C ) ) ^ 2 ) + ( ( abs ` ( B - C ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - C ) ) x. ( abs ` ( B - C ) ) ) x. ( ( Re ` ( ( A - C ) / ( B - C ) ) ) / ( abs ` ( ( A - C ) / ( B - C ) ) ) ) ) ) ) ) |
65 |
24 29 64
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C ) ) -> ( Z ^ 2 ) = ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) - ( 2 x. ( ( X x. Y ) x. ( cos ` O ) ) ) ) ) |