Step |
Hyp |
Ref |
Expression |
1 |
|
lawcoslem1.1 |
|- ( ph -> U e. CC ) |
2 |
|
lawcoslem1.2 |
|- ( ph -> V e. CC ) |
3 |
|
lawcoslem1.3 |
|- ( ph -> U =/= 0 ) |
4 |
|
lawcoslem1.4 |
|- ( ph -> V =/= 0 ) |
5 |
|
sqabssub |
|- ( ( U e. CC /\ V e. CC ) -> ( ( abs ` ( U - V ) ) ^ 2 ) = ( ( ( ( abs ` U ) ^ 2 ) + ( ( abs ` V ) ^ 2 ) ) - ( 2 x. ( Re ` ( U x. ( * ` V ) ) ) ) ) ) |
6 |
1 2 5
|
syl2anc |
|- ( ph -> ( ( abs ` ( U - V ) ) ^ 2 ) = ( ( ( ( abs ` U ) ^ 2 ) + ( ( abs ` V ) ^ 2 ) ) - ( 2 x. ( Re ` ( U x. ( * ` V ) ) ) ) ) ) |
7 |
1 2 4
|
absdivd |
|- ( ph -> ( abs ` ( U / V ) ) = ( ( abs ` U ) / ( abs ` V ) ) ) |
8 |
7
|
oveq2d |
|- ( ph -> ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) = ( ( Re ` ( U / V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) |
9 |
8
|
oveq2d |
|- ( ph -> ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) = ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) ) |
10 |
1
|
abscld |
|- ( ph -> ( abs ` U ) e. RR ) |
11 |
2
|
abscld |
|- ( ph -> ( abs ` V ) e. RR ) |
12 |
10 11
|
remulcld |
|- ( ph -> ( ( abs ` U ) x. ( abs ` V ) ) e. RR ) |
13 |
12
|
recnd |
|- ( ph -> ( ( abs ` U ) x. ( abs ` V ) ) e. CC ) |
14 |
1 2 4
|
divcld |
|- ( ph -> ( U / V ) e. CC ) |
15 |
14
|
recld |
|- ( ph -> ( Re ` ( U / V ) ) e. RR ) |
16 |
15
|
recnd |
|- ( ph -> ( Re ` ( U / V ) ) e. CC ) |
17 |
10
|
recnd |
|- ( ph -> ( abs ` U ) e. CC ) |
18 |
11
|
recnd |
|- ( ph -> ( abs ` V ) e. CC ) |
19 |
2 4
|
absne0d |
|- ( ph -> ( abs ` V ) =/= 0 ) |
20 |
17 18 19
|
divcld |
|- ( ph -> ( ( abs ` U ) / ( abs ` V ) ) e. CC ) |
21 |
1 3
|
absne0d |
|- ( ph -> ( abs ` U ) =/= 0 ) |
22 |
17 18 21 19
|
divne0d |
|- ( ph -> ( ( abs ` U ) / ( abs ` V ) ) =/= 0 ) |
23 |
13 16 20 22
|
div12d |
|- ( ph -> ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) = ( ( Re ` ( U / V ) ) x. ( ( ( abs ` U ) x. ( abs ` V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) ) |
24 |
9 23
|
eqtrd |
|- ( ph -> ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) = ( ( Re ` ( U / V ) ) x. ( ( ( abs ` U ) x. ( abs ` V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) ) |
25 |
13 17 18 21 19
|
divdiv2d |
|- ( ph -> ( ( ( abs ` U ) x. ( abs ` V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) = ( ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( abs ` V ) ) / ( abs ` U ) ) ) |
26 |
18
|
sqvald |
|- ( ph -> ( ( abs ` V ) ^ 2 ) = ( ( abs ` V ) x. ( abs ` V ) ) ) |
27 |
26
|
oveq1d |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( abs ` U ) ) = ( ( ( abs ` V ) x. ( abs ` V ) ) x. ( abs ` U ) ) ) |
28 |
17 18 18
|
mul31d |
|- ( ph -> ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( abs ` V ) ) = ( ( ( abs ` V ) x. ( abs ` V ) ) x. ( abs ` U ) ) ) |
29 |
27 28
|
eqtr4d |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( abs ` U ) ) = ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( abs ` V ) ) ) |
30 |
29
|
oveq1d |
|- ( ph -> ( ( ( ( abs ` V ) ^ 2 ) x. ( abs ` U ) ) / ( abs ` U ) ) = ( ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( abs ` V ) ) / ( abs ` U ) ) ) |
31 |
18
|
sqcld |
|- ( ph -> ( ( abs ` V ) ^ 2 ) e. CC ) |
32 |
31 17 21
|
divcan4d |
|- ( ph -> ( ( ( ( abs ` V ) ^ 2 ) x. ( abs ` U ) ) / ( abs ` U ) ) = ( ( abs ` V ) ^ 2 ) ) |
33 |
25 30 32
|
3eqtr2rd |
|- ( ph -> ( ( abs ` V ) ^ 2 ) = ( ( ( abs ` U ) x. ( abs ` V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) |
34 |
33
|
oveq2d |
|- ( ph -> ( ( Re ` ( U / V ) ) x. ( ( abs ` V ) ^ 2 ) ) = ( ( Re ` ( U / V ) ) x. ( ( ( abs ` U ) x. ( abs ` V ) ) / ( ( abs ` U ) / ( abs ` V ) ) ) ) ) |
35 |
16 31
|
mulcomd |
|- ( ph -> ( ( Re ` ( U / V ) ) x. ( ( abs ` V ) ^ 2 ) ) = ( ( ( abs ` V ) ^ 2 ) x. ( Re ` ( U / V ) ) ) ) |
36 |
11
|
resqcld |
|- ( ph -> ( ( abs ` V ) ^ 2 ) e. RR ) |
37 |
36 14
|
remul2d |
|- ( ph -> ( Re ` ( ( ( abs ` V ) ^ 2 ) x. ( U / V ) ) ) = ( ( ( abs ` V ) ^ 2 ) x. ( Re ` ( U / V ) ) ) ) |
38 |
35 37
|
eqtr4d |
|- ( ph -> ( ( Re ` ( U / V ) ) x. ( ( abs ` V ) ^ 2 ) ) = ( Re ` ( ( ( abs ` V ) ^ 2 ) x. ( U / V ) ) ) ) |
39 |
1 31 2 4
|
div12d |
|- ( ph -> ( U x. ( ( ( abs ` V ) ^ 2 ) / V ) ) = ( ( ( abs ` V ) ^ 2 ) x. ( U / V ) ) ) |
40 |
31 2 4
|
divrecd |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) / V ) = ( ( ( abs ` V ) ^ 2 ) x. ( 1 / V ) ) ) |
41 |
|
recval |
|- ( ( V e. CC /\ V =/= 0 ) -> ( 1 / V ) = ( ( * ` V ) / ( ( abs ` V ) ^ 2 ) ) ) |
42 |
2 4 41
|
syl2anc |
|- ( ph -> ( 1 / V ) = ( ( * ` V ) / ( ( abs ` V ) ^ 2 ) ) ) |
43 |
42
|
oveq2d |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( 1 / V ) ) = ( ( ( abs ` V ) ^ 2 ) x. ( ( * ` V ) / ( ( abs ` V ) ^ 2 ) ) ) ) |
44 |
2
|
cjcld |
|- ( ph -> ( * ` V ) e. CC ) |
45 |
|
sqne0 |
|- ( ( abs ` V ) e. CC -> ( ( ( abs ` V ) ^ 2 ) =/= 0 <-> ( abs ` V ) =/= 0 ) ) |
46 |
18 45
|
syl |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) =/= 0 <-> ( abs ` V ) =/= 0 ) ) |
47 |
19 46
|
mpbird |
|- ( ph -> ( ( abs ` V ) ^ 2 ) =/= 0 ) |
48 |
44 31 47
|
divcan2d |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( ( * ` V ) / ( ( abs ` V ) ^ 2 ) ) ) = ( * ` V ) ) |
49 |
43 48
|
eqtrd |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( 1 / V ) ) = ( * ` V ) ) |
50 |
40 49
|
eqtrd |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) / V ) = ( * ` V ) ) |
51 |
50
|
oveq2d |
|- ( ph -> ( U x. ( ( ( abs ` V ) ^ 2 ) / V ) ) = ( U x. ( * ` V ) ) ) |
52 |
39 51
|
eqtr3d |
|- ( ph -> ( ( ( abs ` V ) ^ 2 ) x. ( U / V ) ) = ( U x. ( * ` V ) ) ) |
53 |
52
|
fveq2d |
|- ( ph -> ( Re ` ( ( ( abs ` V ) ^ 2 ) x. ( U / V ) ) ) = ( Re ` ( U x. ( * ` V ) ) ) ) |
54 |
38 53
|
eqtrd |
|- ( ph -> ( ( Re ` ( U / V ) ) x. ( ( abs ` V ) ^ 2 ) ) = ( Re ` ( U x. ( * ` V ) ) ) ) |
55 |
24 34 54
|
3eqtr2rd |
|- ( ph -> ( Re ` ( U x. ( * ` V ) ) ) = ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) ) |
56 |
55
|
oveq2d |
|- ( ph -> ( 2 x. ( Re ` ( U x. ( * ` V ) ) ) ) = ( 2 x. ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) ) ) |
57 |
56
|
oveq2d |
|- ( ph -> ( ( ( ( abs ` U ) ^ 2 ) + ( ( abs ` V ) ^ 2 ) ) - ( 2 x. ( Re ` ( U x. ( * ` V ) ) ) ) ) = ( ( ( ( abs ` U ) ^ 2 ) + ( ( abs ` V ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) ) ) ) |
58 |
6 57
|
eqtrd |
|- ( ph -> ( ( abs ` ( U - V ) ) ^ 2 ) = ( ( ( ( abs ` U ) ^ 2 ) + ( ( abs ` V ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` U ) x. ( abs ` V ) ) x. ( ( Re ` ( U / V ) ) / ( abs ` ( U / V ) ) ) ) ) ) ) |