Metamath Proof Explorer


Theorem lbfzo0

Description: An integer is strictly greater than zero iff it is a member of NN . (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion lbfzo0
|- ( 0 e. ( 0 ..^ A ) <-> A e. NN )

Proof

Step Hyp Ref Expression
1 0z
 |-  0 e. ZZ
2 3anass
 |-  ( ( 0 e. ZZ /\ A e. ZZ /\ 0 < A ) <-> ( 0 e. ZZ /\ ( A e. ZZ /\ 0 < A ) ) )
3 1 2 mpbiran
 |-  ( ( 0 e. ZZ /\ A e. ZZ /\ 0 < A ) <-> ( A e. ZZ /\ 0 < A ) )
4 fzolb
 |-  ( 0 e. ( 0 ..^ A ) <-> ( 0 e. ZZ /\ A e. ZZ /\ 0 < A ) )
5 elnnz
 |-  ( A e. NN <-> ( A e. ZZ /\ 0 < A ) )
6 3 4 5 3bitr4i
 |-  ( 0 e. ( 0 ..^ A ) <-> A e. NN )