| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) |
| 2 |
|
xrleid |
|- ( A e. RR* -> A <_ A ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A <_ A ) |
| 4 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) |
| 5 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A e. ( A [,) B ) <-> ( A e. RR* /\ A <_ A /\ A < B ) ) ) |
| 6 |
5
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( A e. ( A [,) B ) <-> ( A e. RR* /\ A <_ A /\ A < B ) ) ) |
| 7 |
1 3 4 6
|
mpbir3and |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. ( A [,) B ) ) |