Description: If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lbinfcl | |- ( ( S C_ RR /\ E. x e. S A. y e. S x <_ y ) -> inf ( S , RR , < ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbinf | |- ( ( S C_ RR /\ E. x e. S A. y e. S x <_ y ) -> inf ( S , RR , < ) = ( iota_ x e. S A. y e. S x <_ y ) ) |
|
| 2 | lbcl | |- ( ( S C_ RR /\ E. x e. S A. y e. S x <_ y ) -> ( iota_ x e. S A. y e. S x <_ y ) e. S ) |
|
| 3 | 1 2 | eqeltrd | |- ( ( S C_ RR /\ E. x e. S A. y e. S x <_ y ) -> inf ( S , RR , < ) e. S ) |