Step |
Hyp |
Ref |
Expression |
1 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
2 |
1
|
elixx3g |
|- ( A e. ( A (,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ A e. RR* ) /\ ( A < A /\ A <_ B ) ) ) |
3 |
2
|
biimpi |
|- ( A e. ( A (,] B ) -> ( ( A e. RR* /\ B e. RR* /\ A e. RR* ) /\ ( A < A /\ A <_ B ) ) ) |
4 |
3
|
simprld |
|- ( A e. ( A (,] B ) -> A < A ) |
5 |
1
|
elmpocl1 |
|- ( A e. ( A (,] B ) -> A e. RR* ) |
6 |
|
xrltnr |
|- ( A e. RR* -> -. A < A ) |
7 |
5 6
|
syl |
|- ( A e. ( A (,] B ) -> -. A < A ) |
8 |
4 7
|
pm2.65i |
|- -. A e. ( A (,] B ) |