| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ioc |  |-  (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) | 
						
							| 2 | 1 | elixx3g |  |-  ( A e. ( A (,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ A e. RR* ) /\ ( A < A /\ A <_ B ) ) ) | 
						
							| 3 | 2 | biimpi |  |-  ( A e. ( A (,] B ) -> ( ( A e. RR* /\ B e. RR* /\ A e. RR* ) /\ ( A < A /\ A <_ B ) ) ) | 
						
							| 4 | 3 | simprld |  |-  ( A e. ( A (,] B ) -> A < A ) | 
						
							| 5 | 1 | elmpocl1 |  |-  ( A e. ( A (,] B ) -> A e. RR* ) | 
						
							| 6 |  | xrltnr |  |-  ( A e. RR* -> -. A < A ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. ( A (,] B ) -> -. A < A ) | 
						
							| 8 | 4 7 | pm2.65i |  |-  -. A e. ( A (,] B ) |