Description: An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | |- V = ( Base ` W ) | |
| lbsss.j | |- J = ( LBasis ` W ) | ||
| Assertion | lbsel | |- ( ( B e. J /\ E e. B ) -> E e. V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lbsss.v | |- V = ( Base ` W ) | |
| 2 | lbsss.j | |- J = ( LBasis ` W ) | |
| 3 | 1 2 | lbsss | |- ( B e. J -> B C_ V ) | 
| 4 | 3 | sselda | |- ( ( B e. J /\ E e. B ) -> E e. V ) |