Step |
Hyp |
Ref |
Expression |
1 |
|
lbsex.j |
|- J = ( LBasis ` W ) |
2 |
|
id |
|- ( W e. LVec -> W e. LVec ) |
3 |
|
fvex |
|- ( Base ` W ) e. _V |
4 |
3
|
pwex |
|- ~P ( Base ` W ) e. _V |
5 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
6 |
5
|
biimpi |
|- ( CHOICE -> dom card = _V ) |
7 |
4 6
|
eleqtrrid |
|- ( CHOICE -> ~P ( Base ` W ) e. dom card ) |
8 |
|
0ss |
|- (/) C_ ( Base ` W ) |
9 |
|
ral0 |
|- A. x e. (/) -. x e. ( ( LSpan ` W ) ` ( (/) \ { x } ) ) |
10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
11 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
12 |
1 10 11
|
lbsextg |
|- ( ( ( W e. LVec /\ ~P ( Base ` W ) e. dom card ) /\ (/) C_ ( Base ` W ) /\ A. x e. (/) -. x e. ( ( LSpan ` W ) ` ( (/) \ { x } ) ) ) -> E. s e. J (/) C_ s ) |
13 |
8 9 12
|
mp3an23 |
|- ( ( W e. LVec /\ ~P ( Base ` W ) e. dom card ) -> E. s e. J (/) C_ s ) |
14 |
2 7 13
|
syl2anr |
|- ( ( CHOICE /\ W e. LVec ) -> E. s e. J (/) C_ s ) |
15 |
|
rexn0 |
|- ( E. s e. J (/) C_ s -> J =/= (/) ) |
16 |
14 15
|
syl |
|- ( ( CHOICE /\ W e. LVec ) -> J =/= (/) ) |