Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsex.j | |- J = ( LBasis ` W ) |
|
| lbsex.v | |- V = ( Base ` W ) |
||
| lbsex.n | |- N = ( LSpan ` W ) |
||
| Assertion | lbsext | |- ( ( W e. LVec /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | |- J = ( LBasis ` W ) |
|
| 2 | lbsex.v | |- V = ( Base ` W ) |
|
| 3 | lbsex.n | |- N = ( LSpan ` W ) |
|
| 4 | 2 | fvexi | |- V e. _V |
| 5 | 4 | pwex | |- ~P V e. _V |
| 6 | numth3 | |- ( ~P V e. _V -> ~P V e. dom card ) |
|
| 7 | 5 6 | ax-mp | |- ~P V e. dom card |
| 8 | 7 | jctr | |- ( W e. LVec -> ( W e. LVec /\ ~P V e. dom card ) ) |
| 9 | 1 2 3 | lbsextg | |- ( ( ( W e. LVec /\ ~P V e. dom card ) /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s ) |
| 10 | 8 9 | syl3an1 | |- ( ( W e. LVec /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s ) |