Metamath Proof Explorer


Theorem lbsext

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j
|- J = ( LBasis ` W )
lbsex.v
|- V = ( Base ` W )
lbsex.n
|- N = ( LSpan ` W )
Assertion lbsext
|- ( ( W e. LVec /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s )

Proof

Step Hyp Ref Expression
1 lbsex.j
 |-  J = ( LBasis ` W )
2 lbsex.v
 |-  V = ( Base ` W )
3 lbsex.n
 |-  N = ( LSpan ` W )
4 2 fvexi
 |-  V e. _V
5 4 pwex
 |-  ~P V e. _V
6 numth3
 |-  ( ~P V e. _V -> ~P V e. dom card )
7 5 6 ax-mp
 |-  ~P V e. dom card
8 7 jctr
 |-  ( W e. LVec -> ( W e. LVec /\ ~P V e. dom card ) )
9 1 2 3 lbsextg
 |-  ( ( ( W e. LVec /\ ~P V e. dom card ) /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s )
10 8 9 syl3an1
 |-  ( ( W e. LVec /\ C C_ V /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) -> E. s e. J C C_ s )