| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lbsind2.j |  |-  J = ( LBasis ` W ) | 
						
							| 2 |  | lbsind2.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | lbsind2.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | lbsind2.o |  |-  .1. = ( 1r ` F ) | 
						
							| 5 |  | lbsind2.z |  |-  .0. = ( 0g ` F ) | 
						
							| 6 |  | simp1l |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> W e. LMod ) | 
						
							| 7 |  | simp2 |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> B e. J ) | 
						
							| 8 |  | simp3 |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. B ) | 
						
							| 9 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 10 | 9 1 | lbsel |  |-  ( ( B e. J /\ E e. B ) -> E e. ( Base ` W ) ) | 
						
							| 11 | 7 8 10 | syl2anc |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. ( Base ` W ) ) | 
						
							| 12 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 13 | 9 3 12 4 | lmodvs1 |  |-  ( ( W e. LMod /\ E e. ( Base ` W ) ) -> ( .1. ( .s ` W ) E ) = E ) | 
						
							| 14 | 6 11 13 | syl2anc |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> ( .1. ( .s ` W ) E ) = E ) | 
						
							| 15 | 3 | lmodring |  |-  ( W e. LMod -> F e. Ring ) | 
						
							| 16 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 17 | 16 4 | ringidcl |  |-  ( F e. Ring -> .1. e. ( Base ` F ) ) | 
						
							| 18 | 6 15 17 | 3syl |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. e. ( Base ` F ) ) | 
						
							| 19 |  | simp1r |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. =/= .0. ) | 
						
							| 20 | 9 1 2 3 12 16 5 | lbsind |  |-  ( ( ( B e. J /\ E e. B ) /\ ( .1. e. ( Base ` F ) /\ .1. =/= .0. ) ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) | 
						
							| 21 | 7 8 18 19 20 | syl22anc |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) | 
						
							| 22 | 14 21 | eqneltrrd |  |-  ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. E e. ( N ` ( B \ { E } ) ) ) |