Step |
Hyp |
Ref |
Expression |
1 |
|
lbsind2.j |
|- J = ( LBasis ` W ) |
2 |
|
lbsind2.n |
|- N = ( LSpan ` W ) |
3 |
|
lbsind2.f |
|- F = ( Scalar ` W ) |
4 |
|
lbsind2.o |
|- .1. = ( 1r ` F ) |
5 |
|
lbsind2.z |
|- .0. = ( 0g ` F ) |
6 |
|
simp1l |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> W e. LMod ) |
7 |
|
simp2 |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> B e. J ) |
8 |
|
simp3 |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. B ) |
9 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
10 |
9 1
|
lbsel |
|- ( ( B e. J /\ E e. B ) -> E e. ( Base ` W ) ) |
11 |
7 8 10
|
syl2anc |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. ( Base ` W ) ) |
12 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
13 |
9 3 12 4
|
lmodvs1 |
|- ( ( W e. LMod /\ E e. ( Base ` W ) ) -> ( .1. ( .s ` W ) E ) = E ) |
14 |
6 11 13
|
syl2anc |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> ( .1. ( .s ` W ) E ) = E ) |
15 |
3
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
16 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
17 |
16 4
|
ringidcl |
|- ( F e. Ring -> .1. e. ( Base ` F ) ) |
18 |
6 15 17
|
3syl |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. e. ( Base ` F ) ) |
19 |
|
simp1r |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. =/= .0. ) |
20 |
9 1 2 3 12 16 5
|
lbsind |
|- ( ( ( B e. J /\ E e. B ) /\ ( .1. e. ( Base ` F ) /\ .1. =/= .0. ) ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) |
21 |
7 8 18 19 20
|
syl22anc |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) |
22 |
14 21
|
eqneltrrd |
|- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. E e. ( N ` ( B \ { E } ) ) ) |