Step |
Hyp |
Ref |
Expression |
1 |
|
lbsss.v |
|- V = ( Base ` W ) |
2 |
|
lbsss.j |
|- J = ( LBasis ` W ) |
3 |
|
lbssp.n |
|- N = ( LSpan ` W ) |
4 |
|
elfvdm |
|- ( B e. ( LBasis ` W ) -> W e. dom LBasis ) |
5 |
4 2
|
eleq2s |
|- ( B e. J -> W e. dom LBasis ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
8 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
10 |
1 6 7 8 2 3 9
|
islbs |
|- ( W e. dom LBasis -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
11 |
5 10
|
syl |
|- ( B e. J -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
12 |
11
|
ibi |
|- ( B e. J -> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( N ` ( B \ { x } ) ) ) ) |
13 |
12
|
simp2d |
|- ( B e. J -> ( N ` B ) = V ) |