Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcdneg.h | |- H = ( LHyp ` K ) |
|
| lcdneg.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| lcdneg.r | |- R = ( Scalar ` U ) |
||
| lcdneg.m | |- M = ( invg ` R ) |
||
| lcdneg.c | |- C = ( ( LCDual ` K ) ` W ) |
||
| lcdneg.s | |- S = ( Scalar ` C ) |
||
| lcdneg.n | |- N = ( invg ` S ) |
||
| lcdneg.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| Assertion | lcdneg | |- ( ph -> N = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcdneg.h | |- H = ( LHyp ` K ) |
|
| 2 | lcdneg.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | lcdneg.r | |- R = ( Scalar ` U ) |
|
| 4 | lcdneg.m | |- M = ( invg ` R ) |
|
| 5 | lcdneg.c | |- C = ( ( LCDual ` K ) ` W ) |
|
| 6 | lcdneg.s | |- S = ( Scalar ` C ) |
|
| 7 | lcdneg.n | |- N = ( invg ` S ) |
|
| 8 | lcdneg.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 9 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 10 | 1 2 3 9 5 6 8 | lcdsca | |- ( ph -> S = ( oppR ` R ) ) |
| 11 | 10 | fveq2d | |- ( ph -> ( invg ` S ) = ( invg ` ( oppR ` R ) ) ) |
| 12 | 9 4 | opprneg | |- M = ( invg ` ( oppR ` R ) ) |
| 13 | 11 7 12 | 3eqtr4g | |- ( ph -> N = M ) |