| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvaddval.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdvaddval.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdvaddval.v |
|- V = ( Base ` U ) |
| 4 |
|
lcdvaddval.r |
|- R = ( Scalar ` U ) |
| 5 |
|
lcdvaddval.a |
|- .+ = ( +g ` R ) |
| 6 |
|
lcdvaddval.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
lcdvaddval.d |
|- D = ( Base ` C ) |
| 8 |
|
lcdvaddval.p |
|- .+b = ( +g ` C ) |
| 9 |
|
lcdvaddval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lcdvaddval.f |
|- ( ph -> F e. D ) |
| 11 |
|
lcdvaddval.g |
|- ( ph -> G e. D ) |
| 12 |
|
lcdvaddval.x |
|- ( ph -> X e. V ) |
| 13 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
| 14 |
|
eqid |
|- ( +g ` ( LDual ` U ) ) = ( +g ` ( LDual ` U ) ) |
| 15 |
1 2 13 14 6 8 9
|
lcdvadd |
|- ( ph -> .+b = ( +g ` ( LDual ` U ) ) ) |
| 16 |
15
|
oveqd |
|- ( ph -> ( F .+b G ) = ( F ( +g ` ( LDual ` U ) ) G ) ) |
| 17 |
16
|
fveq1d |
|- ( ph -> ( ( F .+b G ) ` X ) = ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) ) |
| 18 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 19 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 20 |
1 6 7 2 18 9 10
|
lcdvbaselfl |
|- ( ph -> F e. ( LFnl ` U ) ) |
| 21 |
1 6 7 2 18 9 11
|
lcdvbaselfl |
|- ( ph -> G e. ( LFnl ` U ) ) |
| 22 |
3 4 5 18 13 14 19 20 21 12
|
ldualvaddval |
|- ( ph -> ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) ) |
| 23 |
17 22
|
eqtrd |
|- ( ph -> ( ( F .+b G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) ) |