| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvsass.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdvsass.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdvsass.r |
|- R = ( Scalar ` U ) |
| 4 |
|
lcdvsass.l |
|- L = ( Base ` R ) |
| 5 |
|
lcdvsass.t |
|- .x. = ( .r ` R ) |
| 6 |
|
lcdvsass.d |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
lcdvsass.f |
|- F = ( Base ` C ) |
| 8 |
|
lcdvsass.s |
|- .xb = ( .s ` C ) |
| 9 |
|
lcdvsass.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lcdvsass.x |
|- ( ph -> X e. L ) |
| 11 |
|
lcdvsass.y |
|- ( ph -> Y e. L ) |
| 12 |
|
lcdvsass.g |
|- ( ph -> G e. F ) |
| 13 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
| 14 |
|
eqid |
|- ( .r ` ( Scalar ` C ) ) = ( .r ` ( Scalar ` C ) ) |
| 15 |
1 2 3 4 5 6 13 14 9 10 11
|
lcdsmul |
|- ( ph -> ( X ( .r ` ( Scalar ` C ) ) Y ) = ( Y .x. X ) ) |
| 16 |
15
|
oveq1d |
|- ( ph -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( ( Y .x. X ) .xb G ) ) |
| 17 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 18 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
| 19 |
1 2 3 4 6 13 18 9
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = L ) |
| 20 |
10 19
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( Scalar ` C ) ) ) |
| 21 |
11 19
|
eleqtrrd |
|- ( ph -> Y e. ( Base ` ( Scalar ` C ) ) ) |
| 22 |
7 13 8 18 14
|
lmodvsass |
|- ( ( C e. LMod /\ ( X e. ( Base ` ( Scalar ` C ) ) /\ Y e. ( Base ` ( Scalar ` C ) ) /\ G e. F ) ) -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |
| 23 |
17 20 21 12 22
|
syl13anc |
|- ( ph -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |
| 24 |
16 23
|
eqtr3d |
|- ( ph -> ( ( Y .x. X ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |