| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvsub.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdvsub.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdvsub.s |
|- S = ( Scalar ` U ) |
| 4 |
|
lcdvsub.n |
|- N = ( invg ` S ) |
| 5 |
|
lcdvsub.e |
|- .1. = ( 1r ` S ) |
| 6 |
|
lcdvsub.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
lcdvsub.v |
|- V = ( Base ` C ) |
| 8 |
|
lcdvsub.p |
|- .+ = ( +g ` C ) |
| 9 |
|
lcdvsub.t |
|- .x. = ( .s ` C ) |
| 10 |
|
lcdvsub.m |
|- .- = ( -g ` C ) |
| 11 |
|
lcdvsub.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
lcdvsub.f |
|- ( ph -> F e. V ) |
| 13 |
|
lcdvsub.g |
|- ( ph -> G e. V ) |
| 14 |
1 6 11
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 15 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
| 16 |
|
eqid |
|- ( invg ` ( Scalar ` C ) ) = ( invg ` ( Scalar ` C ) ) |
| 17 |
|
eqid |
|- ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) |
| 18 |
7 8 10 15 9 16 17
|
lmodvsubval2 |
|- ( ( C e. LMod /\ F e. V /\ G e. V ) -> ( F .- G ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) |
| 19 |
14 12 13 18
|
syl3anc |
|- ( ph -> ( F .- G ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) |
| 20 |
|
eqid |
|- ( oppR ` S ) = ( oppR ` S ) |
| 21 |
20 4
|
opprneg |
|- N = ( invg ` ( oppR ` S ) ) |
| 22 |
1 2 3 20 6 15 11
|
lcdsca |
|- ( ph -> ( Scalar ` C ) = ( oppR ` S ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( invg ` ( Scalar ` C ) ) = ( invg ` ( oppR ` S ) ) ) |
| 24 |
21 23
|
eqtr4id |
|- ( ph -> N = ( invg ` ( Scalar ` C ) ) ) |
| 25 |
20 5
|
oppr1 |
|- .1. = ( 1r ` ( oppR ` S ) ) |
| 26 |
22
|
fveq2d |
|- ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( oppR ` S ) ) ) |
| 27 |
25 26
|
eqtr4id |
|- ( ph -> .1. = ( 1r ` ( Scalar ` C ) ) ) |
| 28 |
24 27
|
fveq12d |
|- ( ph -> ( N ` .1. ) = ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ) |
| 29 |
28
|
oveq1d |
|- ( ph -> ( ( N ` .1. ) .x. G ) = ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( F .+ ( ( N ` .1. ) .x. G ) ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) |
| 31 |
19 30
|
eqtr4d |
|- ( ph -> ( F .- G ) = ( F .+ ( ( N ` .1. ) .x. G ) ) ) |