| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcf1o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcf1o.v |
|- V = ( Base ` U ) |
| 5 |
|
lcf1o.a |
|- .+ = ( +g ` U ) |
| 6 |
|
lcf1o.t |
|- .x. = ( .s ` U ) |
| 7 |
|
lcf1o.s |
|- S = ( Scalar ` U ) |
| 8 |
|
lcf1o.r |
|- R = ( Base ` S ) |
| 9 |
|
lcf1o.z |
|- .0. = ( 0g ` U ) |
| 10 |
|
lcf1o.f |
|- F = ( LFnl ` U ) |
| 11 |
|
lcf1o.l |
|- L = ( LKer ` U ) |
| 12 |
|
lcf1o.d |
|- D = ( LDual ` U ) |
| 13 |
|
lcf1o.q |
|- Q = ( 0g ` D ) |
| 14 |
|
lcf1o.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
| 15 |
|
lcf1o.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
| 16 |
|
lcflo.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
lcfrlem10.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
lcfrlem14.n |
|- N = ( LSpan ` U ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
lcfrlem11 |
|- ( ph -> ( L ` ( J ` X ) ) = ( ._|_ ` { X } ) ) |
| 20 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 21 |
20
|
snssd |
|- ( ph -> { X } C_ V ) |
| 22 |
1 3 2 4 18 16 21
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` { X } ) ) |
| 23 |
19 22
|
eqtr4d |
|- ( ph -> ( L ` ( J ` X ) ) = ( ._|_ ` ( N ` { X } ) ) ) |
| 24 |
23
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) ) |
| 25 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 26 |
1 3 4 18 25
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 27 |
16 20 26
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 28 |
1 25 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) = ( N ` { X } ) ) |
| 29 |
16 27 28
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) = ( N ` { X } ) ) |
| 30 |
24 29
|
eqtrd |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( N ` { X } ) ) |