Metamath Proof Explorer


Theorem lcm0val

Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcm0val
|- ( M e. ZZ -> ( M lcm 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 0z
 |-  0 e. ZZ
2 lcmval
 |-  ( ( M e. ZZ /\ 0 e. ZZ ) -> ( M lcm 0 ) = if ( ( M = 0 \/ 0 = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ 0 || n ) } , RR , < ) ) )
3 eqid
 |-  0 = 0
4 3 olci
 |-  ( M = 0 \/ 0 = 0 )
5 4 iftruei
 |-  if ( ( M = 0 \/ 0 = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ 0 || n ) } , RR , < ) ) = 0
6 2 5 eqtrdi
 |-  ( ( M e. ZZ /\ 0 e. ZZ ) -> ( M lcm 0 ) = 0 )
7 1 6 mpan2
 |-  ( M e. ZZ -> ( M lcm 0 ) = 0 )