| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcd1 |  |-  ( M e. ZZ -> ( M gcd 1 ) = 1 ) | 
						
							| 2 | 1 | oveq2d |  |-  ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( ( M lcm 1 ) x. 1 ) ) | 
						
							| 3 |  | 1z |  |-  1 e. ZZ | 
						
							| 4 |  | lcmcl |  |-  ( ( M e. ZZ /\ 1 e. ZZ ) -> ( M lcm 1 ) e. NN0 ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( M e. ZZ -> ( M lcm 1 ) e. NN0 ) | 
						
							| 6 | 5 | nn0cnd |  |-  ( M e. ZZ -> ( M lcm 1 ) e. CC ) | 
						
							| 7 | 6 | mulridd |  |-  ( M e. ZZ -> ( ( M lcm 1 ) x. 1 ) = ( M lcm 1 ) ) | 
						
							| 8 | 2 7 | eqtr2d |  |-  ( M e. ZZ -> ( M lcm 1 ) = ( ( M lcm 1 ) x. ( M gcd 1 ) ) ) | 
						
							| 9 |  | lcmgcd |  |-  ( ( M e. ZZ /\ 1 e. ZZ ) -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) | 
						
							| 10 | 3 9 | mpan2 |  |-  ( M e. ZZ -> ( ( M lcm 1 ) x. ( M gcd 1 ) ) = ( abs ` ( M x. 1 ) ) ) | 
						
							| 11 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 12 | 11 | mulridd |  |-  ( M e. ZZ -> ( M x. 1 ) = M ) | 
						
							| 13 | 12 | fveq2d |  |-  ( M e. ZZ -> ( abs ` ( M x. 1 ) ) = ( abs ` M ) ) | 
						
							| 14 | 8 10 13 | 3eqtrd |  |-  ( M e. ZZ -> ( M lcm 1 ) = ( abs ` M ) ) |