| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 2 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 3 |  | absor |  |-  ( M e. RR -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) | 
						
							| 4 |  | absor |  |-  ( N e. RR -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) | 
						
							| 5 | 3 4 | anim12i |  |-  ( ( M e. RR /\ N e. RR ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) | 
						
							| 6 | 1 2 5 | syl2an |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) | 
						
							| 7 |  | oveq12 |  |-  ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) | 
						
							| 9 |  | oveq12 |  |-  ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm N ) ) | 
						
							| 10 |  | neglcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( M lcm N ) ) | 
						
							| 11 | 9 10 | sylan9eqr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | 
						
							| 12 | 11 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) | 
						
							| 13 |  | oveq12 |  |-  ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm -u N ) ) | 
						
							| 14 |  | lcmneg |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) | 
						
							| 15 | 13 14 | sylan9eqr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) | 
						
							| 17 |  | oveq12 |  |-  ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm -u N ) ) | 
						
							| 18 |  | znegcl |  |-  ( M e. ZZ -> -u M e. ZZ ) | 
						
							| 19 |  | lcmneg |  |-  ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) | 
						
							| 21 | 20 10 | eqtrd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( M lcm N ) ) | 
						
							| 22 | 17 21 | sylan9eqr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) | 
						
							| 24 | 8 12 16 23 | ccased |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) | 
						
							| 25 | 6 24 | mpd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |