Step |
Hyp |
Ref |
Expression |
1 |
|
orass |
|- ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) <-> ( N = 0 \/ ( M = 0 \/ P = 0 ) ) ) |
2 |
|
anass |
|- ( ( ( N || x /\ M || x ) /\ P || x ) <-> ( N || x /\ ( M || x /\ P || x ) ) ) |
3 |
2
|
rabbii |
|- { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } = { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } |
4 |
3
|
infeq1i |
|- inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) = inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) |
5 |
1 4
|
ifbieq2i |
|- if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) = if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) |
6 |
|
lcmcl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm M ) e. NN0 ) |
7 |
6
|
3adant3 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm M ) e. NN0 ) |
8 |
7
|
nn0zd |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm M ) e. ZZ ) |
9 |
|
simp3 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> P e. ZZ ) |
10 |
|
lcmval |
|- ( ( ( N lcm M ) e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
11 |
8 9 10
|
syl2anc |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
12 |
|
lcmeq0 |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N lcm M ) = 0 <-> ( N = 0 \/ M = 0 ) ) ) |
13 |
12
|
3adant3 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) = 0 <-> ( N = 0 \/ M = 0 ) ) ) |
14 |
13
|
orbi1d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N lcm M ) = 0 \/ P = 0 ) <-> ( ( N = 0 \/ M = 0 ) \/ P = 0 ) ) ) |
15 |
14
|
bicomd |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) <-> ( ( N lcm M ) = 0 \/ P = 0 ) ) ) |
16 |
|
nnz |
|- ( x e. NN -> x e. ZZ ) |
17 |
16
|
adantl |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> x e. ZZ ) |
18 |
|
simp1 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> N e. ZZ ) |
19 |
18
|
adantr |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> N e. ZZ ) |
20 |
|
simpl2 |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> M e. ZZ ) |
21 |
|
lcmdvdsb |
|- ( ( x e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( N || x /\ M || x ) <-> ( N lcm M ) || x ) ) |
22 |
17 19 20 21
|
syl3anc |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( N || x /\ M || x ) <-> ( N lcm M ) || x ) ) |
23 |
22
|
anbi1d |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( ( N || x /\ M || x ) /\ P || x ) <-> ( ( N lcm M ) || x /\ P || x ) ) ) |
24 |
23
|
rabbidva |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } = { x e. NN | ( ( N lcm M ) || x /\ P || x ) } ) |
25 |
24
|
infeq1d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) = inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) |
26 |
15 25
|
ifbieq2d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
27 |
11 26
|
eqtr4d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) ) |
28 |
|
lcmcl |
|- ( ( M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. NN0 ) |
29 |
28
|
3adant1 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. NN0 ) |
30 |
29
|
nn0zd |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. ZZ ) |
31 |
|
lcmval |
|- ( ( N e. ZZ /\ ( M lcm P ) e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
32 |
18 30 31
|
syl2anc |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
33 |
|
lcmeq0 |
|- ( ( M e. ZZ /\ P e. ZZ ) -> ( ( M lcm P ) = 0 <-> ( M = 0 \/ P = 0 ) ) ) |
34 |
33
|
3adant1 |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( M lcm P ) = 0 <-> ( M = 0 \/ P = 0 ) ) ) |
35 |
34
|
orbi2d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 \/ ( M lcm P ) = 0 ) <-> ( N = 0 \/ ( M = 0 \/ P = 0 ) ) ) ) |
36 |
35
|
bicomd |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) <-> ( N = 0 \/ ( M lcm P ) = 0 ) ) ) |
37 |
9
|
adantr |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> P e. ZZ ) |
38 |
|
lcmdvdsb |
|- ( ( x e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( M || x /\ P || x ) <-> ( M lcm P ) || x ) ) |
39 |
17 20 37 38
|
syl3anc |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( M || x /\ P || x ) <-> ( M lcm P ) || x ) ) |
40 |
39
|
anbi2d |
|- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( N || x /\ ( M || x /\ P || x ) ) <-> ( N || x /\ ( M lcm P ) || x ) ) ) |
41 |
40
|
rabbidva |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } = { x e. NN | ( N || x /\ ( M lcm P ) || x ) } ) |
42 |
41
|
infeq1d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) = inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) |
43 |
36 42
|
ifbieq2d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
44 |
32 43
|
eqtr4d |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) ) |
45 |
5 27 44
|
3eqtr4a |
|- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = ( N lcm ( M lcm P ) ) ) |