| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( N lcm M ) ) | 
						
							| 3 |  | oveq2 |  |-  ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) | 
						
							| 4 |  | lcm0val |  |-  ( N e. ZZ -> ( N lcm 0 ) = 0 ) | 
						
							| 5 | 3 4 | sylan9eqr |  |-  ( ( N e. ZZ /\ M = 0 ) -> ( N lcm M ) = 0 ) | 
						
							| 6 | 5 | adantll |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = 0 ) | 
						
							| 7 | 2 6 | eqtrd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 8 |  | oveq2 |  |-  ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) | 
						
							| 9 |  | lcm0val |  |-  ( M e. ZZ -> ( M lcm 0 ) = 0 ) | 
						
							| 10 | 8 9 | sylan9eqr |  |-  ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) | 
						
							| 12 | 7 11 | jaodan |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) | 
						
							| 13 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 14 | 12 13 | eqeltrdi |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) | 
						
							| 15 |  | lcmn0cl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) | 
						
							| 16 | 15 | nnnn0d |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) | 
						
							| 17 | 14 16 | pm2.61dan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |