Step |
Hyp |
Ref |
Expression |
1 |
|
lcmn0val |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
2 |
|
ssrab2 |
|- { n e. NN | ( M || n /\ N || n ) } C_ NN |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
2 3
|
sseqtri |
|- { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) |
5 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
6 |
5
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M x. N ) e. ZZ ) |
7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
8 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
9 |
7 8
|
anim12i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. CC /\ N e. CC ) ) |
10 |
|
ioran |
|- ( -. ( M = 0 \/ N = 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) |
11 |
|
df-ne |
|- ( M =/= 0 <-> -. M = 0 ) |
12 |
|
df-ne |
|- ( N =/= 0 <-> -. N = 0 ) |
13 |
11 12
|
anbi12i |
|- ( ( M =/= 0 /\ N =/= 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) |
14 |
10 13
|
sylbb2 |
|- ( -. ( M = 0 \/ N = 0 ) -> ( M =/= 0 /\ N =/= 0 ) ) |
15 |
|
mulne0 |
|- ( ( ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
16 |
15
|
an4s |
|- ( ( ( M e. CC /\ N e. CC ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
17 |
9 14 16
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M x. N ) =/= 0 ) |
18 |
|
nnabscl |
|- ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) |
19 |
6 17 18
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( abs ` ( M x. N ) ) e. NN ) |
20 |
|
dvdsmul1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
21 |
|
dvdsabsb |
|- ( ( M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( M || ( M x. N ) <-> M || ( abs ` ( M x. N ) ) ) ) |
22 |
5 21
|
syldan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M x. N ) <-> M || ( abs ` ( M x. N ) ) ) ) |
23 |
20 22
|
mpbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( abs ` ( M x. N ) ) ) |
24 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) ) |
25 |
|
dvdsabsb |
|- ( ( N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
26 |
5 25
|
sylan2 |
|- ( ( N e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
27 |
26
|
anabss7 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M x. N ) <-> N || ( abs ` ( M x. N ) ) ) ) |
28 |
24 27
|
mpbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( abs ` ( M x. N ) ) ) |
29 |
23 28
|
jca |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) |
30 |
29
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) |
31 |
|
breq2 |
|- ( n = ( abs ` ( M x. N ) ) -> ( M || n <-> M || ( abs ` ( M x. N ) ) ) ) |
32 |
|
breq2 |
|- ( n = ( abs ` ( M x. N ) ) -> ( N || n <-> N || ( abs ` ( M x. N ) ) ) ) |
33 |
31 32
|
anbi12d |
|- ( n = ( abs ` ( M x. N ) ) -> ( ( M || n /\ N || n ) <-> ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) ) |
34 |
33
|
rspcev |
|- ( ( ( abs ` ( M x. N ) ) e. NN /\ ( M || ( abs ` ( M x. N ) ) /\ N || ( abs ` ( M x. N ) ) ) ) -> E. n e. NN ( M || n /\ N || n ) ) |
35 |
19 30 34
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> E. n e. NN ( M || n /\ N || n ) ) |
36 |
|
rabn0 |
|- ( { n e. NN | ( M || n /\ N || n ) } =/= (/) <-> E. n e. NN ( M || n /\ N || n ) ) |
37 |
35 36
|
sylibr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> { n e. NN | ( M || n /\ N || n ) } =/= (/) ) |
38 |
|
infssuzcl |
|- ( ( { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( M || n /\ N || n ) } =/= (/) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) e. { n e. NN | ( M || n /\ N || n ) } ) |
39 |
4 37 38
|
sylancr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) e. { n e. NN | ( M || n /\ N || n ) } ) |
40 |
1 39
|
eqeltrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |