Step |
Hyp |
Ref |
Expression |
1 |
|
orcom |
|- ( ( M = 0 \/ N = 0 ) <-> ( N = 0 \/ M = 0 ) ) |
2 |
|
ancom |
|- ( ( M || n /\ N || n ) <-> ( N || n /\ M || n ) ) |
3 |
2
|
rabbii |
|- { n e. NN | ( M || n /\ N || n ) } = { n e. NN | ( N || n /\ M || n ) } |
4 |
3
|
infeq1i |
|- inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) = inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) |
5 |
1 4
|
ifbieq2i |
|- if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) |
6 |
|
lcmval |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
7 |
|
lcmval |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm M ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) ) |
8 |
7
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N lcm M ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) ) |
9 |
5 6 8
|
3eqtr4a |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |