Metamath Proof Explorer


Theorem lcmdvds

Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmdvds
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( 0 || K -> 0 || K )
2 breq1
 |-  ( M = 0 -> ( M || K <-> 0 || K ) )
3 2 adantl
 |-  ( ( N e. ZZ /\ M = 0 ) -> ( M || K <-> 0 || K ) )
4 oveq1
 |-  ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) )
5 0z
 |-  0 e. ZZ
6 lcmcom
 |-  ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 lcm N ) = ( N lcm 0 ) )
7 5 6 mpan
 |-  ( N e. ZZ -> ( 0 lcm N ) = ( N lcm 0 ) )
8 lcm0val
 |-  ( N e. ZZ -> ( N lcm 0 ) = 0 )
9 7 8 eqtrd
 |-  ( N e. ZZ -> ( 0 lcm N ) = 0 )
10 4 9 sylan9eqr
 |-  ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 )
11 10 breq1d
 |-  ( ( N e. ZZ /\ M = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) )
12 3 11 imbi12d
 |-  ( ( N e. ZZ /\ M = 0 ) -> ( ( M || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) )
13 1 12 mpbiri
 |-  ( ( N e. ZZ /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) )
14 13 3ad2antl3
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) )
15 14 adantrd
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
16 15 ex
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
17 breq1
 |-  ( N = 0 -> ( N || K <-> 0 || K ) )
18 17 adantl
 |-  ( ( M e. ZZ /\ N = 0 ) -> ( N || K <-> 0 || K ) )
19 oveq2
 |-  ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) )
20 lcm0val
 |-  ( M e. ZZ -> ( M lcm 0 ) = 0 )
21 19 20 sylan9eqr
 |-  ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 )
22 21 breq1d
 |-  ( ( M e. ZZ /\ N = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) )
23 18 22 imbi12d
 |-  ( ( M e. ZZ /\ N = 0 ) -> ( ( N || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) )
24 1 23 mpbiri
 |-  ( ( M e. ZZ /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) )
25 24 3ad2antl2
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) )
26 25 adantld
 |-  ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
27 26 ex
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
28 neanior
 |-  ( ( M =/= 0 /\ N =/= 0 ) <-> -. ( M = 0 \/ N = 0 ) )
29 lcmcl
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 )
30 29 nn0zd
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ )
31 dvds0
 |-  ( ( M lcm N ) e. ZZ -> ( M lcm N ) || 0 )
32 30 31 syl
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) || 0 )
33 32 a1d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) )
34 33 adantr
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) )
35 breq2
 |-  ( K = 0 -> ( M || K <-> M || 0 ) )
36 breq2
 |-  ( K = 0 -> ( N || K <-> N || 0 ) )
37 35 36 anbi12d
 |-  ( K = 0 -> ( ( M || K /\ N || K ) <-> ( M || 0 /\ N || 0 ) ) )
38 breq2
 |-  ( K = 0 -> ( ( M lcm N ) || K <-> ( M lcm N ) || 0 ) )
39 37 38 imbi12d
 |-  ( K = 0 -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) )
40 39 adantl
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) )
41 34 40 mpbird
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
42 41 adantrl
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
43 42 adantllr
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
44 43 adantlrr
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
45 44 anassrs
 |-  ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
46 nnabscl
 |-  ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN )
47 nnabscl
 |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN )
48 nnabscl
 |-  ( ( K e. ZZ /\ K =/= 0 ) -> ( abs ` K ) e. NN )
49 lcmgcdlem
 |-  ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) /\ ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) )
50 49 simprd
 |-  ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) )
51 48 50 sylani
 |-  ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) )
52 46 47 51 syl2an
 |-  ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) )
53 52 expdimp
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) )
54 dvdsabsb
 |-  ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> M || ( abs ` K ) ) )
55 zabscl
 |-  ( K e. ZZ -> ( abs ` K ) e. ZZ )
56 absdvdsb
 |-  ( ( M e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) )
57 55 56 sylan2
 |-  ( ( M e. ZZ /\ K e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) )
58 54 57 bitrd
 |-  ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) )
59 58 adantlr
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) )
60 dvdsabsb
 |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> N || ( abs ` K ) ) )
61 absdvdsb
 |-  ( ( N e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) )
62 55 61 sylan2
 |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) )
63 60 62 bitrd
 |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) )
64 63 adantll
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) )
65 59 64 anbi12d
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) )
66 65 bicomd
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) <-> ( M || K /\ N || K ) ) )
67 lcmabs
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) )
68 67 breq1d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) )
69 68 adantr
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) )
70 dvdsabsb
 |-  ( ( ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) )
71 30 70 sylan
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) )
72 69 71 bitr4d
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || K ) )
73 66 72 imbi12d
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
74 73 adantrr
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
75 74 adantllr
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
76 75 adantlrr
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
77 53 76 mpbid
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
78 77 anassrs
 |-  ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K =/= 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
79 45 78 pm2.61dane
 |-  ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )
80 79 ex
 |-  ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
81 80 an4s
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
82 28 81 sylan2br
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
83 82 impancom
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
84 83 3impa
 |-  ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
85 84 3comr
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) )
86 16 27 85 ecase3d
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) )