| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmdvds |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) | 
						
							| 2 |  | dvdslcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 3 | 2 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) | 
						
							| 6 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 7 | 6 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) | 
						
							| 9 |  | simp1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) | 
						
							| 10 |  | dvdstr |  |-  ( ( M e. ZZ /\ ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || K ) -> M || K ) ) | 
						
							| 11 | 5 8 9 10 | syl3anc |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || K ) -> M || K ) ) | 
						
							| 12 | 4 11 | mpand |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> M || K ) ) | 
						
							| 13 | 2 | simprd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) | 
						
							| 15 |  | dvdstr |  |-  ( ( N e. ZZ /\ ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) | 
						
							| 16 | 15 | 3com13 |  |-  ( ( K e. ZZ /\ ( M lcm N ) e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) | 
						
							| 17 | 8 16 | syld3an2 |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || K ) -> N || K ) ) | 
						
							| 18 | 14 17 | mpand |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> N || K ) ) | 
						
							| 19 | 12 18 | jcad |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) || K -> ( M || K /\ N || K ) ) ) | 
						
							| 20 | 1 19 | impbid |  |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( M lcm N ) || K ) ) |