| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
| 2 |
1
|
nnne0d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) =/= 0 ) |
| 3 |
2
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( M lcm N ) =/= 0 ) ) |
| 4 |
3
|
necon4bd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = 0 -> ( M = 0 \/ N = 0 ) ) ) |
| 5 |
|
oveq1 |
|- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
|
lcmcom |
|- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) |
| 8 |
6 7
|
mpan2 |
|- ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) |
| 9 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
| 10 |
8 9
|
eqtr3d |
|- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
| 11 |
5 10
|
sylan9eqr |
|- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 12 |
11
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 13 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
| 14 |
|
lcm0val |
|- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
| 15 |
13 14
|
sylan9eqr |
|- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 16 |
15
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 17 |
12 16
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
| 18 |
17
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 \/ N = 0 ) -> ( M lcm N ) = 0 ) ) |
| 19 |
4 18
|
impbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = 0 <-> ( M = 0 \/ N = 0 ) ) ) |