| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmf0val |
|- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |
| 2 |
|
0nn0 |
|- 0 e. NN0 |
| 3 |
1 2
|
eqeltrdi |
|- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) e. NN0 ) |
| 4 |
3
|
adantlr |
|- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e. Z ) -> ( _lcm ` Z ) e. NN0 ) |
| 5 |
|
df-nel |
|- ( 0 e/ Z <-> -. 0 e. Z ) |
| 6 |
|
lcmfn0cl |
|- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
| 7 |
6
|
3expa |
|- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
| 8 |
5 7
|
sylan2br |
|- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> ( _lcm ` Z ) e. NN ) |
| 9 |
8
|
nnnn0d |
|- ( ( ( Z C_ ZZ /\ Z e. Fin ) /\ -. 0 e. Z ) -> ( _lcm ` Z ) e. NN0 ) |
| 10 |
4 9
|
pm2.61dan |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN0 ) |