Step |
Hyp |
Ref |
Expression |
1 |
|
lcmfdvds |
|- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K -> ( _lcm ` Z ) || K ) ) |
2 |
|
dvdslcmf |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> A. x e. Z x || ( _lcm ` Z ) ) |
3 |
|
breq1 |
|- ( x = m -> ( x || ( _lcm ` Z ) <-> m || ( _lcm ` Z ) ) ) |
4 |
3
|
rspcv |
|- ( m e. Z -> ( A. x e. Z x || ( _lcm ` Z ) -> m || ( _lcm ` Z ) ) ) |
5 |
|
ssel |
|- ( Z C_ ZZ -> ( m e. Z -> m e. ZZ ) ) |
6 |
5
|
adantr |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( m e. Z -> m e. ZZ ) ) |
7 |
6
|
com12 |
|- ( m e. Z -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m e. ZZ ) ) |
8 |
7
|
adantr |
|- ( ( m e. Z /\ K e. ZZ ) -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m e. ZZ ) ) |
9 |
8
|
imp |
|- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> m e. ZZ ) |
10 |
|
lcmfcl |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN0 ) |
11 |
10
|
nn0zd |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( _lcm ` Z ) e. ZZ ) |
12 |
11
|
adantl |
|- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( _lcm ` Z ) e. ZZ ) |
13 |
|
simplr |
|- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> K e. ZZ ) |
14 |
|
dvdstr |
|- ( ( m e. ZZ /\ ( _lcm ` Z ) e. ZZ /\ K e. ZZ ) -> ( ( m || ( _lcm ` Z ) /\ ( _lcm ` Z ) || K ) -> m || K ) ) |
15 |
9 12 13 14
|
syl3anc |
|- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( ( m || ( _lcm ` Z ) /\ ( _lcm ` Z ) || K ) -> m || K ) ) |
16 |
15
|
expd |
|- ( ( ( m e. Z /\ K e. ZZ ) /\ ( Z C_ ZZ /\ Z e. Fin ) ) -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) |
17 |
16
|
exp31 |
|- ( m e. Z -> ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
18 |
17
|
com23 |
|- ( m e. Z -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( K e. ZZ -> ( m || ( _lcm ` Z ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
19 |
18
|
com24 |
|- ( m e. Z -> ( m || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> m || K ) ) ) ) ) |
20 |
19
|
com45 |
|- ( m e. Z -> ( m || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m || K ) ) ) ) ) |
21 |
4 20
|
syld |
|- ( m e. Z -> ( A. x e. Z x || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( ( Z C_ ZZ /\ Z e. Fin ) -> m || K ) ) ) ) ) |
22 |
21
|
com15 |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( A. x e. Z x || ( _lcm ` Z ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) ) |
23 |
2 22
|
mpd |
|- ( ( Z C_ ZZ /\ Z e. Fin ) -> ( K e. ZZ -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) |
24 |
23
|
com12 |
|- ( K e. ZZ -> ( ( Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) ) |
25 |
24
|
3impib |
|- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> ( m e. Z -> m || K ) ) ) |
26 |
25
|
ralrimdv |
|- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( ( _lcm ` Z ) || K -> A. m e. Z m || K ) ) |
27 |
1 26
|
impbid |
|- ( ( K e. ZZ /\ Z C_ ZZ /\ Z e. Fin ) -> ( A. m e. Z m || K <-> ( _lcm ` Z ) || K ) ) |