| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzssz |  |-  ( 1 ... N ) C_ ZZ | 
						
							| 2 | 1 | a1i |  |-  ( N e. NN -> ( 1 ... N ) C_ ZZ ) | 
						
							| 3 |  | fzfid |  |-  ( N e. NN -> ( 1 ... N ) e. Fin ) | 
						
							| 4 |  | 0nelfz1 |  |-  0 e/ ( 1 ... N ) | 
						
							| 5 | 4 | a1i |  |-  ( N e. NN -> 0 e/ ( 1 ... N ) ) | 
						
							| 6 | 2 3 5 | 3jca |  |-  ( N e. NN -> ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) ) | 
						
							| 7 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 8 | 7 | faccld |  |-  ( N e. NN -> ( ! ` N ) e. NN ) | 
						
							| 9 |  | elfznn |  |-  ( m e. ( 1 ... N ) -> m e. NN ) | 
						
							| 10 |  | elfzuz3 |  |-  ( m e. ( 1 ... N ) -> N e. ( ZZ>= ` m ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. NN /\ m e. ( 1 ... N ) ) -> N e. ( ZZ>= ` m ) ) | 
						
							| 12 |  | dvdsfac |  |-  ( ( m e. NN /\ N e. ( ZZ>= ` m ) ) -> m || ( ! ` N ) ) | 
						
							| 13 | 9 11 12 | syl2an2 |  |-  ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m || ( ! ` N ) ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( N e. NN -> A. m e. ( 1 ... N ) m || ( ! ` N ) ) | 
						
							| 15 | 8 14 | jca |  |-  ( N e. NN -> ( ( ! ` N ) e. NN /\ A. m e. ( 1 ... N ) m || ( ! ` N ) ) ) | 
						
							| 16 |  | lcmfledvds |  |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( ( ( ! ` N ) e. NN /\ A. m e. ( 1 ... N ) m || ( ! ` N ) ) -> ( _lcm ` ( 1 ... N ) ) <_ ( ! ` N ) ) ) | 
						
							| 17 | 6 15 16 | sylc |  |-  ( N e. NN -> ( _lcm ` ( 1 ... N ) ) <_ ( ! ` N ) ) |