Step |
Hyp |
Ref |
Expression |
1 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
2 |
1
|
a1i |
|- ( N e. NN -> ( 1 ... N ) C_ ZZ ) |
3 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
4 |
|
0nelfz1 |
|- 0 e/ ( 1 ... N ) |
5 |
4
|
a1i |
|- ( N e. NN -> 0 e/ ( 1 ... N ) ) |
6 |
2 3 5
|
3jca |
|- ( N e. NN -> ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) ) |
7 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
8 |
7
|
faccld |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
9 |
|
elfznn |
|- ( m e. ( 1 ... N ) -> m e. NN ) |
10 |
|
elfzuz3 |
|- ( m e. ( 1 ... N ) -> N e. ( ZZ>= ` m ) ) |
11 |
10
|
adantl |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> N e. ( ZZ>= ` m ) ) |
12 |
|
dvdsfac |
|- ( ( m e. NN /\ N e. ( ZZ>= ` m ) ) -> m || ( ! ` N ) ) |
13 |
9 11 12
|
syl2an2 |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m || ( ! ` N ) ) |
14 |
13
|
ralrimiva |
|- ( N e. NN -> A. m e. ( 1 ... N ) m || ( ! ` N ) ) |
15 |
8 14
|
jca |
|- ( N e. NN -> ( ( ! ` N ) e. NN /\ A. m e. ( 1 ... N ) m || ( ! ` N ) ) ) |
16 |
|
lcmfledvds |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( ( ( ! ` N ) e. NN /\ A. m e. ( 1 ... N ) m || ( ! ` N ) ) -> ( _lcm ` ( 1 ... N ) ) <_ ( ! ` N ) ) ) |
17 |
6 15 16
|
sylc |
|- ( N e. NN -> ( _lcm ` ( 1 ... N ) ) <_ ( ! ` N ) ) |