Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( Z C_ NN -> Z C_ NN ) |
2 |
|
nnssz |
|- NN C_ ZZ |
3 |
1 2
|
sstrdi |
|- ( Z C_ NN -> Z C_ ZZ ) |
4 |
3
|
adantr |
|- ( ( Z C_ NN /\ Z e. Fin ) -> Z C_ ZZ ) |
5 |
|
simpr |
|- ( ( Z C_ NN /\ Z e. Fin ) -> Z e. Fin ) |
6 |
|
0nnn |
|- -. 0 e. NN |
7 |
|
ssel |
|- ( Z C_ NN -> ( 0 e. Z -> 0 e. NN ) ) |
8 |
6 7
|
mtoi |
|- ( Z C_ NN -> -. 0 e. Z ) |
9 |
|
df-nel |
|- ( 0 e/ Z <-> -. 0 e. Z ) |
10 |
8 9
|
sylibr |
|- ( Z C_ NN -> 0 e/ Z ) |
11 |
10
|
adantr |
|- ( ( Z C_ NN /\ Z e. Fin ) -> 0 e/ Z ) |
12 |
|
lcmfn0cl |
|- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
13 |
4 5 11 12
|
syl3anc |
|- ( ( Z C_ NN /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN ) |