Metamath Proof Explorer


Theorem lcmfsn

Description: The least common multiple of a singleton is its absolute value. (Contributed by AV, 22-Aug-2020)

Ref Expression
Assertion lcmfsn
|- ( M e. ZZ -> ( _lcm ` { M } ) = ( abs ` M ) )

Proof

Step Hyp Ref Expression
1 dfsn2
 |-  { M } = { M , M }
2 1 a1i
 |-  ( M e. ZZ -> { M } = { M , M } )
3 2 fveq2d
 |-  ( M e. ZZ -> ( _lcm ` { M } ) = ( _lcm ` { M , M } ) )
4 lcmfpr
 |-  ( ( M e. ZZ /\ M e. ZZ ) -> ( _lcm ` { M , M } ) = ( M lcm M ) )
5 4 anidms
 |-  ( M e. ZZ -> ( _lcm ` { M , M } ) = ( M lcm M ) )
6 lcmid
 |-  ( M e. ZZ -> ( M lcm M ) = ( abs ` M ) )
7 3 5 6 3eqtrd
 |-  ( M e. ZZ -> ( _lcm ` { M } ) = ( abs ` M ) )